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GENERALIZED REPRESENTATION OF ELECTRIC FIELDS IN INTERACTION GAPS 

OF KLYSTRONS  AND  TRAVELING  WAVE TUBES WITH AXIAL  SYMMETRY 

by Henry G. Kosmahl 

Lewis Research  Center 

SUMMARY 

Analytic  expressions  for axial and radial electric fields  in  axisymmetric  interaction 
gaps of klystrons  and coupled  cavity  traveling wave tubes are derived.  Introduction of 
the "field shape"  parameter m results  in both  limiting cases of the  field at the  tunnel 
tips,  that is, uniform  field, E equal  to a constant  and E approaching  infinity as well as 
a continuous transition  between  these  two  limits.  The  transition  represents  actual, 
practical fields. This representation  may be used  to  replace  the  somewhat  arbitrary 
expressions  being  applied by various  researchers  to  describe  the  fields. 

INTRODUCTION 

Accurate  computations of electron  motion  through  tunnels of cavities  in  klystrons 
and  coupled-cavity traveling wave tubes (TWT) require  exact  solutions  for  radiofre- 
quency (rf) fringing  fields  between  the  tunnel  tips.  Consider  figure 1 showing  schemat- 
ically  the  interaction  gap of length 22 between the  tunnel  tips  and  the  rest of the reso- 

b 2 1 " - 1  
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Figure 1. - Double reentrant, axispmetric klystron tunnel in resonant  cavity; 
z = 0 i s  at the center of the interaction gap for the klystron. 



nator with  axially  symmetric  fields.  The tunnel has an inner radius rl, an  outer 
radius r2, and  an  average  radius a. Suppose that the  shape of the  electric  field  E is 
known along  the  path  from - 2 to 2 at r = a, for  example, 

Ez(a,  z, t) = e Eof(z) i ut 

with Eo  specified at z = 0 and r = a. Two different  cases  must  be  considered: one 
for  klystrons  and  the  other  for  TWT's.  The  field of a klystron  may  be  represented by 
standing  waves  with  zero  net  propagation of energy  (for  lossless  resonators).  Branch 
(ref. 1) has  shown that such a standing wave field  may be represented by an  infinite sum 
of equal  and  oppositely  directed  space  harmonics  that  add  up  to  zero  propagating  energy. 
Since  the  harmonics a r e  continuous,  they  may  be  expressed by an integral.  The  field 
at r = a is finite  between - 2 < z < 2 and  zero  elsewhere  in  the  metal  and on the  metal- 
lic  boundary. It must  therefore be represented as a Fourier  integral  over  the  space 
harmonics, that is (ref. l), 

f(z) = / * g(p)e-ipz  dp 
J- 00 

Thus, by Fourier  inversion 

g(p) = 1 A +' f(z)eiPz  dz 
2 n  

where p designates  the  phase  propagation  constant. We shall use  these  expressions 
later. 

Let us consider now the  fields of traveling  waves.  Similar  to  klystron  fields, tra- 
veling wave fields  consist  also of an  infinite set of space  harmonics  with,  however, one 
important  difference.  Since  there is now a traveling wave transporting a net  energy  in 
a given  direction,  the  space  harmonics are discrete  rather  than  continuous  and  are  thus 
expressed by an  infinite  nonzero  sum  over all harmonics  rather  than by an  integral. 
From  Floquet's  theorem  for  periodic  systems we have (ref. 2)  

i w t  - ipoz EZ(a,  z, t )  = e E(a,  z>e 

- ipoz 
The  field g(a, z)e , where Po is the  phase  constant of the  fundamental  wave,  may 
be  expanded  in a Fourier  series of the  form 

2 



where 

Pn = P, +- 
2 r n  
L 

Consider now figure 2 showing  schematically a series of rf gaps of length 22 
.. 

spaced by a distance L. Since  Ee is periodic  in  z  with  period  L, we can  deter- 
mine  the  En’s by Fourier  analysis of equation (5). (We s h a l l  return  to  eq. (5) later. ) 

The  evaluation of either  g(p)  from  equation  (3) or En(a)  from  equation (5) requires 
knowledge of f(z).  Closed-form  solutions are available  from  the literature for  the  case 
f(z) = constant  in the gap  and  f(z) = 0 elsewhere.  However,  fields  in  actual  gaps  are 
not uniform but rather  have  the  form  corresponding to  figure  3(c). 

In figure  3 we show schematically  the  form of fields  in  gaps for three  different 

Figure 2. - Series of axisymmetric  interaction gaps of length a. spaced by a  distance L, 
such as they appear in  coupled  cavity TWT; z = 0 i s  at the  beginning of first  cell. 

(a)  Constant  field (Eo = constant (b) Knife-edge  field.  Field (c) Actual field. EZ is  nei ther 
at r = a); blunt  t ips  and  rela- becomes in f in i te  at z = constant  nor  infmite. (Ez 
tively  large  wall  thicknesses, ”Z. at r = a can be verywel l  
r 2  - ‘1, and 22 < 2a. approximated by Eo cosh  mz.) 

Figure 3. -Electric  f ields  for  three  differently shaped tunne l  tips. 
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shapes of tunnel  tips. In figure 3(a) the tunnel wall is thick  and the tips are blunted. 
If, furthermore, 22 << a, the electric field has a constant  value Eo . f(z) = constant = 
Eo at r = a; that is, it rises instantly  to its value  Eo at z = *Z and  remains  constant 
in the gap  between the tips. 

In figure 3(b) the tunnel  tips are assumed  to have zero  thickness (knife edge), and 
the field becomes  infinite at z = *Z; that is, within the gap - 1 I z I +Z, 

J 
In practical  resonators  knife-edge  tips  are 

because of high skin  effect  losses  and,  second, 
interception. 

1 - ($ 

unacceptable  for two reasons: First, 
because of the  danger of melting due to 

Actual fields (fig. 3(c))  retain  some of the  characteristics of the limiting  cases 
(figs.  3(a)  and (b)): The field never  becomes  infinite  nor is it strictly  uniform.  The 
exact field description  depends on the thickness of the tunnel walls, their  shape,  and  the 
aspect  ratio Z/a in  each  individual  case.  Thus, it cannot  be  expressed by a single 
function  (except  an  even  power  polynomial of infinite  order).  However, the general 
features of this function are known: It must be an  even  function of z,  and it must ap- 
proach  unity  (uniform  field)  and  infinity  for the two  limiting  cases,  respectively. In 
addition, we wish it to be a simple  and  integrable  function. We choose  therefore  the 
function 

f (z ,a )  = cosh(mz) (7)  

where  the  factor  m is to be chosen  such that at z = *I the field Eo * cosh(mz)  ac- 
quires the measured,  actual  amplitude E,(a, *Z). It may be seen that for m = 0 we 
obtain  the  case of Eo - f(z, a) = constant = Eo  and'for  large m,  arbitrarily  large  values 
Ez(a, * Z )  may be achieved.  Thus,  the  representation  introduced  in  equation (7) furnishes 
the  much  needed  generality  for  the  treatment of the rf field in  gaps, with both limiting 
cases E,(a, fZ) = Eo or E large, following simply  from a suitable  choice of m. 

The case  m - 00 is not represented  correctly by expression (7) because 

lim  cosh(mz) x lim - emz 
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while 

with 6 = 1 - 

a 

C 

D 

E 

z/z, has edge  tunnel 
tips are not realistic,  and,  for  the finite fields E, numbers  very  accurately  represent- 
ing  actual  fields of figure 3(c)  may be  obtained. This is made  evident by comparing 
actually  measured  fields with those  obtained  from  equation (7) with  the  proper  choice of 
m. In most  cases  1.25 < cosh m2 < 3. 

It  was  the  purpose of this study  to  derive  generally  valid  analytical  expressions  for 
the  fields  in  actual  klystron  and TWT gaps,  thus  replacing  the  somewhat  arbitrary,  em- 
pirical,  or  semianalytic  expressions  being  used  presently. 
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a pole  different  from  that of emz/2. However,  knife- 

SYMBOLS 

average  tunnel  radius 

speed of light 

denominator of integrand 

electric  field 

amplitude of electric  field at gap  center  and r = a 

Fourier  transform 

modified  Bessel  functions of zero  and first order,  respectively 

Bessel  functions of zero  and first order,  respectively 

free wave number  equal  to w/c  

length of period  for TWT circuits 

half length of gap 

field  shaping  parameter 

numerator of integrand 

integer  number of root of Bessel  functions Jo(An) = 0 where  n = 1,2,3, .  . . ; 
also,  integer  summation  index  for  propagation  constants pn and yn for TWT 
equations, - m  < n < 00 
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Pn 
r 

t 

V 

o! 

P 

Y 

6 

e 

'n 
V 

5 

P 

w 

,'A2 n - k2a2 

radius  or radial coordinate 

time 

voltage 

a/l 

axial propagation  constant 

radial  propagation  constant,  equal  to 

small, real number 

transit  time  parameter  equal  to p2 

nth root of Bessel  function, J o ( X n )  = 0 

summation  index 

z/z 

r/Z 

27r X frequency 

Subscripts: 

n, v summation  indexes 

Z,u lower  and  upper half complex  plane,  respectively 

Superscripts: 
I differentiation with respect to argument,  D'(X) = dD(X)/dX 

A complex  amplitude of electric  field,  E(a, z) 

DERIVATION OF FIELD EQUATIONS FOR KLYSTRON  GAPS 

The wave equation  yields the following expressions  for the axial and radial electric 
fields with axial symmetry  in  klystrons  for r 5 a. 
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with y2 = P2 - (w  /c ) and  g(P)  given by equation (3). 2 2  

The  same  method  can be applied  conveniently  to  obtain  analytical  expressions  for  the 
more  general  case  f(z) = cosh(mz)  in the gap  and  zero  elsewhere.  Thus, 

Axial Electric  Fields in Klystrons 

Expression (10) has four terms. We evaluate first equation (7). Substitution of 
equation (10) into  equation (7) yields 

For compactness let mZ = iii, and  adapt  the  notations of Branch (ref. 3): 
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Denoting  the  four  integrals by jl, Y2, J3, and 4, we obtain 

J " 2 -  

00 

4ai 

I .  \ 

I o ( a d , z - o )  - i%i 

J - e - m l  -4ai - e i8(l-5) 

8 + iiii 
d8 

e - ie( l+<) 

e + iiii 
de 

The  quadrature  may be carried out  exactly by the  method of residues  in  the  complex 
plane.  To  do  this we examine  the  denominator for poles.  The  poles  occur at Om = 

and  also at 8 = *en, all on the  imaginary axis. The *en are  the  roots of 

Io ( a i m o ) .  Following  Branch, we call An the  real  roots of the  equation Jo(An) = 0 

= Io(i&): 
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t 

h n } 

We also  introduce a new parameter pn = + A t  - k2a2, which is a real positive 

number.  Therefore, On will be +i 2 pn and -i 2 pn in the  upper  and  lower  complex 

half plane,  respectively. It can  be  seen that An/a  > eo or  ka < An. For  the first root 
ka < hl = 2.408 - - . Since  in  microwave  tubes  ka = 0.1 to 0.5 this condition is well 
satisfied.  Therefore, 

The  integration  path  and  the  roots a r e  shown in  figure 4. The  path  extends  along the 
real  axis  from --oo to WJ,  and it closes  along  an  arc of infinite radius  in  either the 

rn = 07, 
"-""""_ 4 

m # 02' 

I 

9' 
Figure 4. - Integration  path  for  equations (12). 

upper  or lower half plane. In general, m = mZ f 0, and all poles are single  and of first 
order.  The  path of integration is to be  taken  such  that  the  integral  vanishes  along  the 
arc .  Then, 
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where N(B), D(8),  and  D'(8)  designate  the  numerator,  denominator,  and its derivative, 
respectively. 

For Y1 and Y2 the  denominator  and its derivative are 

/ "\ 

The  derivative D' ( e )  assumes now the following: At 8, = iEi 
192 

and at 8 = 8, 

Di,2(Bn) = cy 2 (On - iiii) O n J 1  (Xn) 

'n 

Similarly, we get  for D3, 4(8) and D' (8) the following  values: At Om = 1m .- 
374 

Di,  4(-iiii) = Jo ( d  a! 8 + -2 j  m 

and at 8 = O n  

The numerators N(8) for fl and f3 a re  

And, similarly,  for f2 and f4 
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Convergence is obtained when the real parts of the  exponents iO(1 - 5 )  and -iO(l + E )  
go  to  zero as 8 goes  to infinity. This occurs when and .'3 (corresponding  to 
N1, 3)  are  integrated  over  the  upper  arc i f  1 - 6 > 0 ( 5  < 1) and  over  the  lower a r c  i f  
1 - 5 < 0 ( 5  > l), and when f2 and j4 (corresponding  to N ) are integrated  over 
the upper a rc  if 1 + 5 < 0 ( 5  < - 1) and  over  the  lower a r c  if  1 + 6 > 0 (6 > - 1). 

Application of the theorem of residues (eq. (14))  and  summation  over  the  infinite 

294 

number of roots An, beginning with A1 as the first root,  give  the following results  for 
the integrals fl, J2, f3 , and f4: 

for z < 2 ,  

for z > I ,  

e -m(Z-z) 

00 .z: n=l  

-f2u = " e 
2 

00 

n=l  

for z < - I ,  
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for z > - I ,  

for z < I ,  

for z > I ,  

Fl n=l  

for z < -2, and 

12 



Jo(: m) 

for z > -2. 
The two different  values  for  each of the integrals fl to l4 correspond  to  closing 

the  contour  either  in the upper  or  lower ha l f  plane,  each  value  being  valid  in  the  interval 
indicated  in  equations  (23)  to (30). 

Now, the  field within the  gap  may  be  computed by adding all integrals whose validity 
falls into  the  region - Z < z < 2. We see that the appropriate sum consists of Ilu + j2z 

+ + J4z. The  result of summing up these  four  terms is 

z n=l  

+ cosh (F) 

Outside  the  gap for z > 1 ,  the  summation  consists of j12 + f21 + Jr31 + f41 with the 
results 
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co 1 

L 
n=l  J 

Outside  the  gap but for z < - 1 ,  the  summation  consists of jIu + fZu + -f3u + -f'u: 

Equations  (32)  and  (33)  can be combined for I z 1 > 1 into one expression: 

14 
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n=l  J 
The case  m = 0 must  be  discussed  separately.  The  integration  path  bypasses  the 

origin on a semiarc as indicated  in  figure 4. The  denominators of integrals (12a) to 
(12d)  have a pole at 8 = 0 with nonzero  residues.  However,  the signs in  front of equa- 
tions (12a) and  (12b) as well as those  in  front of equations  (12c)  and  (12d) are opposite, 
and  the  contributions due to  the  residues as well as of the  integrals  along  the  semiarc 
around  the  origin  cancel  each  other. 

Radial  Electric  Field in Klyst rons 

The  expression  for  the radial field E, is 

Introducing  the  expression  for  g(p)  from  equation  (10)  into  equation (35) results  in  the 
following integrals: 

15 



or, for simplicity, 

where integrals j1 to  stand for the four integrals  in  equation  (36).  The  denomi- 
nators D(9) of integrals J1 to -f4 a re  

D(9) = (9  T im) d G  Io ( a i m ; )  

Therefore, J1 to f4 have simple  poles at 

em =*iE 

on the  imaginary axis, and at 
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also on the  imaginary axis. 
Note that 8 = *eo does  not  produce  poles  due  to  cancellation,  which  results  from 

the  argument of -/1 in  the  numerator  and do2 - eo in  the  denominator.  The  contour 

of integration is shown in figure 5 together  with  the  poles.  The  path of integration is 
similar  to that shown in  figure 4 with  the  exception of the  case Ei = 0. 

2 

Upper arc 

! 

Figure 5. - Integration  path  for  equation (36). 

Examination of the  numerator of the  integrands  yields  the  following  conditions  for 
.convergence:  Integrate 

J1 and -f3 along  upper a r c  if 1 - f > 0 ( 5  < 1) 
J1 and J3 along  lower a r c  if  1 - f < 0 ( 5  > 1) 
J2 and J4 along  upper a r c  i f  1 + 5 < 0 (5 < - 1) 
J2 and J4 along  lower a r c  i f  1 + f ;  > 0 (5 > -1). 

The  denominator of l1 and Y2, Dl, 2(8), is 

And its derivative D i ,  ( e )  is 

17 



+ a 8 ( 6  - E i ) i J l ( a d p )  (40) 

The  numerator N ( e )  in  J1 is 
1 ,3  

/ ,  \ 

at 6 = 8  = i - p  I 
n a  n 

Similarly,  the  numerator N ( e )  in J2 is 294 
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at en = i - p  2 
a n 

and at 8, = - i  - 2 
a Pn 

The  derivative of the  denominator of J3 and Y4, DS, 4(8) is 

+ icrQ(6 + iE)J1 (ai-) (47) 

Examination of the  quotient  N (O)/D' ( 6 )  results  in  the following residues of 
1Y3 334 

J3 : 
At 8 = - 1 E  m 

N1y3 (0 m ) - -EJ1 r k + m ( 
- 
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at 8, = i- 1 
a Pn 

and at 0 = -i- Z 
a n pn 

The  residues of Y4 are as follows: 

20 



From equations (35) to (53) the following expressions  may be derived  for  the  result- 

ing field E, = 2si  residues: In the .gap - ,? < Z < 2, 
all 

- m sinh(mz) (54) 

Outside  the  gap z > + 2 ,  

iwt >- J1(: [Illi(li + f pn) - sinh (mz - Pn)] 
Er(r ,  z, t) = -Eoe (55) 

p + m a  P, - ma n 

n=l 
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Outside  the  gap z < - I ,  

J l(t An) e- pn ' ' 
Er(r, z, t) = -Eoe 

J1 (Xn) 

LJ 
n = l  

(56) 
Pn - ma  p  n + m a  

Note that Er(r ,   -z ,  t) = -Er(r,   z,  t), that Er(O, z, t) = 0, and that Er(r ,  0, t) = 0. Thus 
Er is an odd function of z relative  to  the  center of the  gap,  and E, is an  even  function 
of z. When m is set  to  zero,  the  expressions  derived  here  for  EZ(r,  z, t )  and 
Er(r,  z, t) become  identical with those  obtained by Branch  in his unpublished  report. 

DERIVATION OF FIELD EQUATIONS FOR COUPLED CAVITY TWT GAPS 

We return now to  equation (5) and  evaluate  from it the  Fourier  coefficients En. 
Let, as before  in  the  klystron  case,  Eof(z) at radius a be  represented by 
Eo  cosh  m(z - I). Multiply  both sides of equation (5) by e (i27Tz substitute E of (z) 

for G(a, z>e , and  integrate  over the period  from  z = 0 to  z = L. Because of the 
orthogonality of the  function, all terms  are  zero  except when v = n,  and we obtain (with 

Pn = Po + 2 4 L )  

- iP0z 

21  
i P n Z  

cosh  m(z - Z)e dz 

2iPnZ 

] + . (57) 
sinh(mZ) - iPn cosh(mI)  e m  sinh(mZ) + ion cosh(mZ) 

" 
- 

L 2 2  
. .  

+ P n  
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Note that  f(z) = 0 for 21 I z -i L. For m - 0, equation (57) becomes 

iPnZ sin(PnZ) 
lim En =3 21e 
m-0 L 4' 

For uniform  fields,  Eo = V/21 ,  therefore, 

ipnZ sin pnZ 
Gm E =-Ve 
m-0 n L  finz 

which is identical  to  that  available in the literature (e. g., ref. 2) for  uniform  fields, 
that is, V = E021.  

The  appropriate  expressions  for  the axial and radial components of E then follow: 

[m sinh(m1) - ip, cosh(m2) ] e 2iPnz + m  sinh(m1) + ipn cosh(m1) 
X (59) 

m + P n  2 2  

2ipnl 
[m sinh(m2) - ipn cosh(m1je + m  sinh(m1) + ipn cosh(m2) (60) 

X 
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where 

In tube theory it is necessary  to  refer  the  field Eo to  the  gap  voltage V: 

V = /"" Eo cosh  m(z - I )  dz = 2- sinh(m2) EO 
m 

E -  mV 
- 2  sinh(mZ) 

As m approaches  zero 

lim Eo = lim 
m -0 

V V 

which is exactly  the  expression  for  the  uniform  field. From equation (62) Eo may be 
substituted  in all equations  wherever it is desirable  to have the  fields  expressed  in  terms 
of gap  voltages. 

SUMMARY OF RESULTS 

Radial  and  axial  electric  fields  in  axisymmetric  interaction  gaps of klystrons  and 
coupled  cavity  traveling wave tubes  were  obtained  in  closed  form  expressions by assum- 
ing that the  field at the radius of the  tunnel  tips r = a is equal  to Eo cosh(mz),  where 
m is a properly  chosen  field  shaping  parameter  and Eo is the  amplitude of E midway 
between  the  tunnel  tips. 

In the  case of klystron  gaps the radial  and axial expressions  were  derived by the 
method of contour  integration of the  Fourier  transform of the  gap  times  the  solution of 
the wave equation as the sum of the  residues. To obtain  Convergence, it was necessary 
to  derive  the  expressions for the  field  inside  and  outside  the  gap  separately. 

For TWTs the  radial  and axial gap  fields  were  derived by  expanding  the  gap  field at 
r = a into  discrete  space  harmonics whose infinite sum represents  the  gap field. 
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For both  types of tube  the  validity of the  expressions  ranges  from a constant  field 
between  the  tunnel  tips  to  very  large  nonuniform  fields but excluding infinite fields. 
The latter are, however, of no practical  interest. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland, Ohio, December 21,  1971, 
164-21. 
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